

BARTH-HAAS HOPS ACADEMY

All there is to know about hops!

Stefan J. Stanglmair Dipl.-Ing. (FH)

18. July 2019

Introduction into the world of hops Challenges in the modern & successful production of hops

A member of the BARTH-HAAS GROUP

Introduction

Stefan J. Stanglmair

44 years old (year of birth: 1974)
married, 3 children

Apprenticeship:

 Univeristy of Applied Sciences Weihenstephan (Agriculture, 1994-1998, Dipl.-Ing. agr. (FH))
 practicum/traineeship 5 months in England, Kent, Hayle Farm

Career:

grown up on a hop farm in the south Hallertau (~20 ha hops, ~14 ha crop farming, ~15 ha forestry)
working for Joh. Barth & Sohn since 1998

(hop purchasing & advice/consulting,

southern Hallertau & Slovenia)

running his own hop production in the south Hallertau at 20 ha:

(var.: Hallertau Mittelfrueh, Mandarina Bavaria, Hallertau Blanc, Huell Melon, Ariana, Polaris, Herkules)

Challenges in the modern & successful production of hops (40 min)

- Hop cultivation systems
- Measures to adjust varieties into different growing regions/climates
- Up to date Irrigation & fertigation
- Digitalisation in hop production
- Contemporary plant protection in hops
- Contemporary harvesting/kilning/drying of hops
- Up to date conditioning of hops
- Modern documentation and certification in hop production
- Production measures to reach highest quality in hops

Hop cultivation systems

High Trellis Hop Garden - double bine

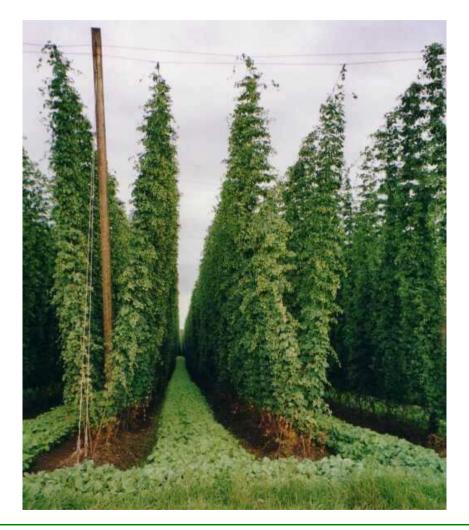
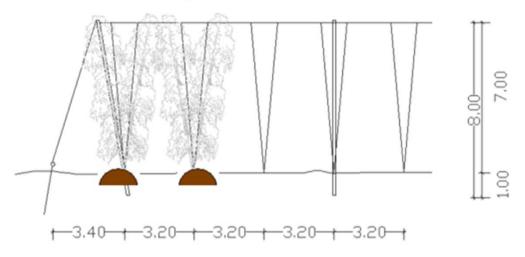
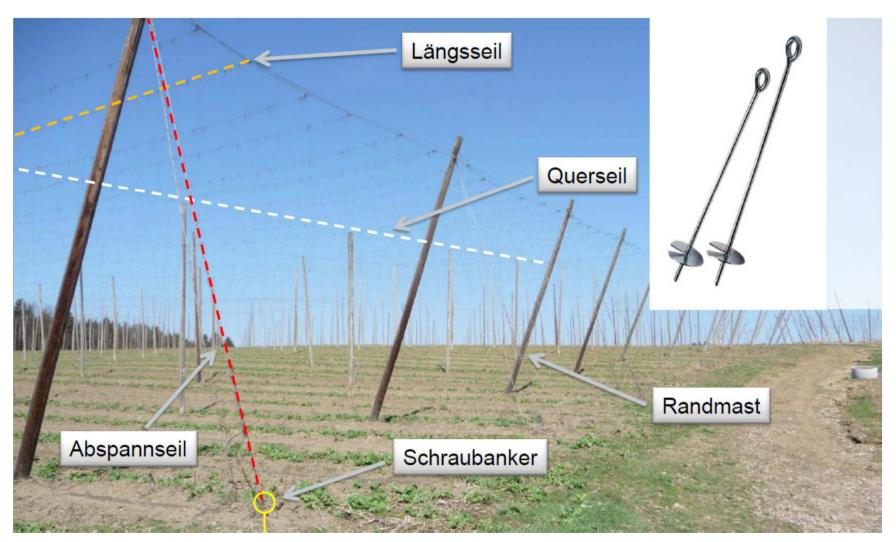



Bild: LfL

Hop cultivation systems



- Hallertau Hop Trellis
- > spacing in the row: 1,3 1,7 m
- row distance: 3,2 m
- > Hight: 7 m

Hop cultivation systems

Quelle: Statik von Hopfengerüstanlagen, Hochschule Regensburg

Hop cultivation systems

Low Trellis System

- spacing in the row: 0,75 m
- distance row to row: 3,2 m
- Hight: 3,0 m

Hop cultivation systems

- Most of the hops commercially grown are at High Trellis
- Some hop production at Low Trellis in England and USA

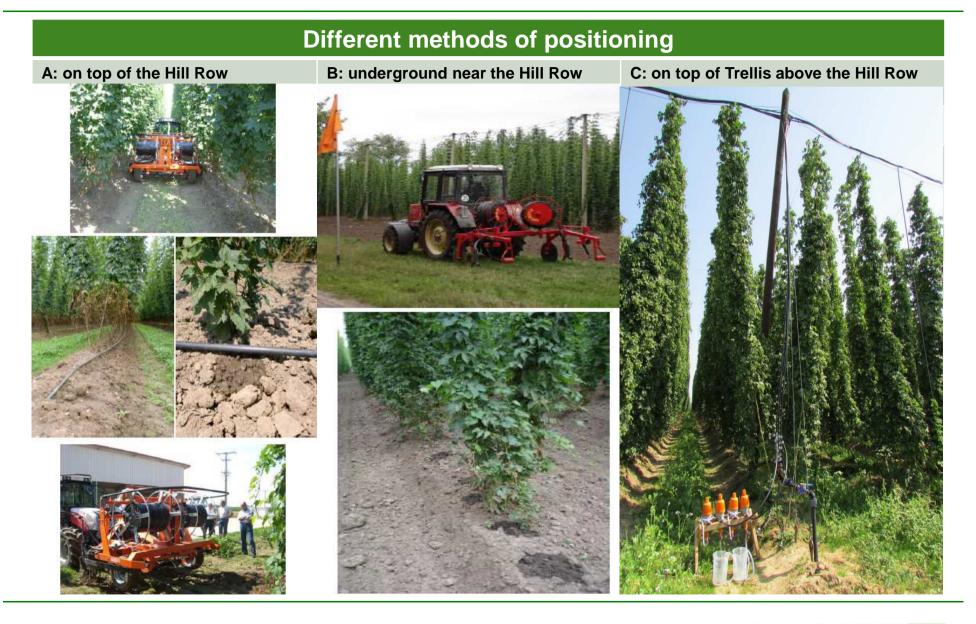
Advantage of Low Trellis	Disadvantage of Low Trellis	
Reduced demand of chemical agents	Only very few suitable varieties	
Reduced drift with special spray equipment	lowyields	
Reduced demand on labour and energy	Low stability agains wind	

Digitalisation in hop production – new way of erecting a hop field is to know about hops!

GPS mapping of hop gardens

- CAD-Planing of hop gardens
- Straight to the point GPS-mapping in the field
- Planting rows per GPS
- Mapping of hop poles per GPS
- Mapping roboter with hole driller

- Computer control system for irrigation control
- Frequenzy transforming technology to control the pressure and water flow/ water quantity from the deep-well pump
- => Increase of the energy-efficiency



Irrigation control technology

BARTH-HAAS HOPS ACADEMY

Drip Irrigation – different methods to position

Drip Irrigation – different methods to position

Different methods of positioning the drip irrigation tubes				
A: on top of the Hill Row	B: underground near the Hill Row (sub survace drip irrigation)	C: on top of Trellis above the Hill Row		
~ 50 % in Germany, appr. 1.500 ha	~ 45 % in Germany, appr. 1.400 ha	~ 5 % in Germany, appr. 150 ha		
 Perfect functional control Best way of irrigation for light & sandy soils Best performance in hops 	 Low annual amount of labor Irrigation is timewise indefinitely possible No damage through rodents 	 Low annual amount of labor Irrigation is timewise indefinitely possible No damage through rodents Humid micro climate in the hop garden No damage through soil cultivation 		
 Highest annual amount of work/labour Irrigation start not possible before mid of June Damage through rodents possible 	 complicated functional control Soil compactation at the tractor lanes Damage through soil cultivation possible 	 Higher effort of installation complicated functional control Micro erosion, slurry soil coating, wind drift Leaf & Bloom combustion through fertigation Inhomogenious constituent climate – increase/support of fungual diseases 		

• Fertigation is necessary to avoid undernutrition through irrigation!

Example:

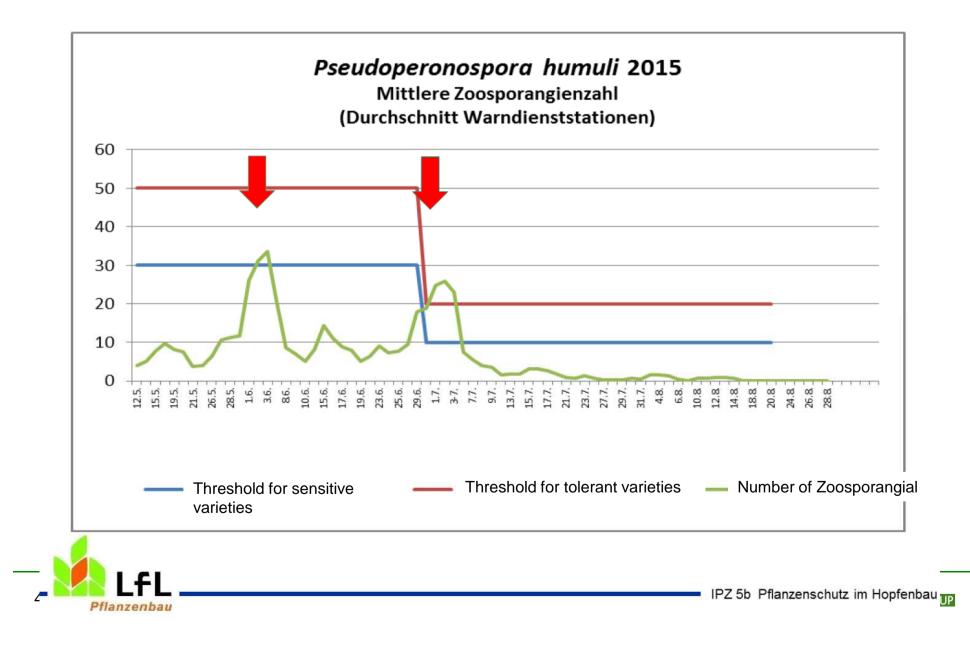
- June: irrigation + fertigation accentuated on nitrogen
 - Daily appr. 1,5 mm (15 m³/ha) water + 2 kg Urea (46%) + 5 kg MgSO₄
- July: irrigation + fertigation balanced between nitrogen & magnesium
 - Daily appr. 2 mm (20 m³/ha) water + 2 kg Urea (46%) + 6 kg MgSO₄
- August: irrigation + fertigation accentuated on magnesium
 - Daily appr. 2 mm (20 m³/ha) water + 1/2 kg Urea (46%) + 4 kg MgSO₄

Sensor spray technology in single plant protection

Sensorcontrolled single plant control technology

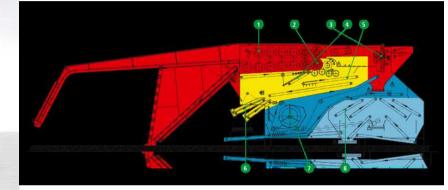
- Exact & accurate plant protection
- Saving chemical agents

BARTH-HAAS HOPS ACADEMY


A member of the BARTH-HAAS GROUP

BARTH-HAAS HOPS ACADEMY

- Automatic control of the amount of plant protection solution at varying driving speed
- Electronic display of driving speed and amount of plant protection solution l/min or l/ha



Digitalisation in hop production

BARTH-HAAS HOPS ACADEMY All there is to know about hops!

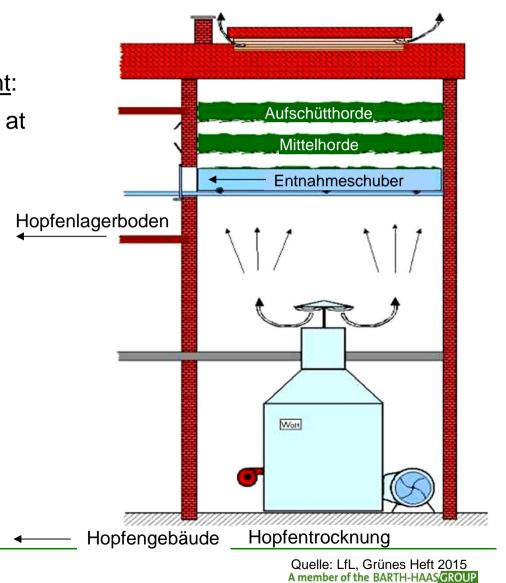
Frequenzy transforming technology in picking machines

- Optimization of the picking process
- Fine tuning possibilities of different electric motors
- More gentle start of the electric motors to avoid "start up peaks"
- Up to 30 % energy safings
- Reduction of motor noise
- Extension of lifespan of the electric motors
- youtube: <u>https://www.youtube.com/watch?v=MnmePLAx9YU</u>

Kilning/Drying of Hops

Multiple layer kiln for hops

- Principle of kilning hops gently & efficient:
 - Homogeniuos hight and density at the top layer!
 - Drying temperature:


62 - 65 °C

• airspeed:

0,3 – 0,4 m/s

• Hight of hops at the top layer:

30 – 35 cm

Digitalisation in hop production

Frequenzy transforming technology in hop drying equipment

- Progressive adjustment of the volumetric flow rate and adjustment of the power
- More gentle start of the electric motors to avoid "start up peaks"
- Frequenzy transforming technology in hop drying equipment is necessary for the so called: "hop drying in three phases"
- **youtube:** <u>https://www.youtube.com/watch?v=_4ywsUq2vaU</u>

Digitalisation in hop production

Computer control system for hop drying

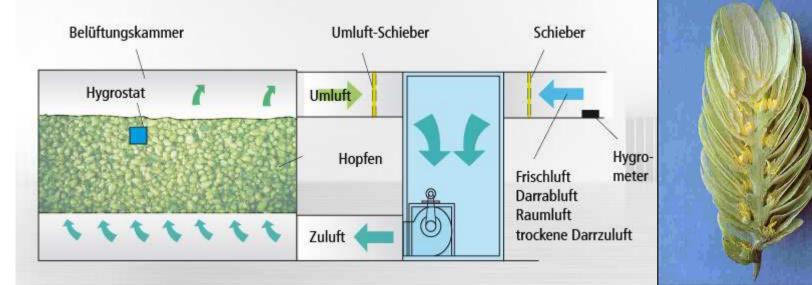
All there is to know about hops!

"Three-phases-kilning" for hops

- Fullautomated adjustment of drying parameters of hops during the whole drying process
- Quality conservation due to optimization of the drying phases
- Energy safing
- Increasing of the drying capacity due to optimization of the water output from the hops <u>youtube:</u> <u>https://www.youtube.com/watch?v=rVfrkX496Fk</u>

Digitalisation in hop production

Automatic kiln filling system



Fullautomated, sensorcontrolled filling system for hop kilns

- Rapid and fast filling
- Homogenious filling
- Increase of the drying capacity due to reduction of the filling time
- More gently kilning process through uninterruption in the drying procedure
- youtube: <u>https://www.youtube.com/watch?v=I7BWDn5alvE</u>

Digitalisation in hop production

Computer controlling system conditioning (climabox)

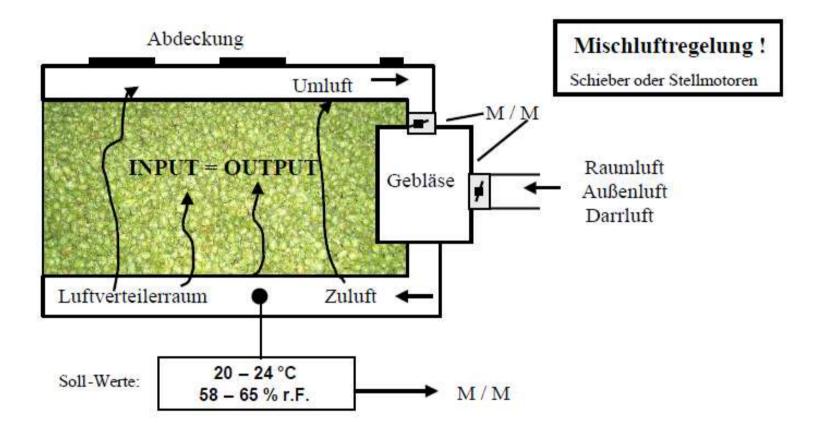
- Fullautomated gaining/production of the mixed air for the conditioning of the hops
- Optimization of the moisture content of the hops

Parameters of the intake air for perfect conditioning of hops:

- appr. 22°C,
- 63% rel. air humidity

Conditioning of hops

 Conditioning of hops is essential for preserving the quality of hops and establishing the storability



 Optimum water content after cilning/drying: 9 – 10 %

BUT:

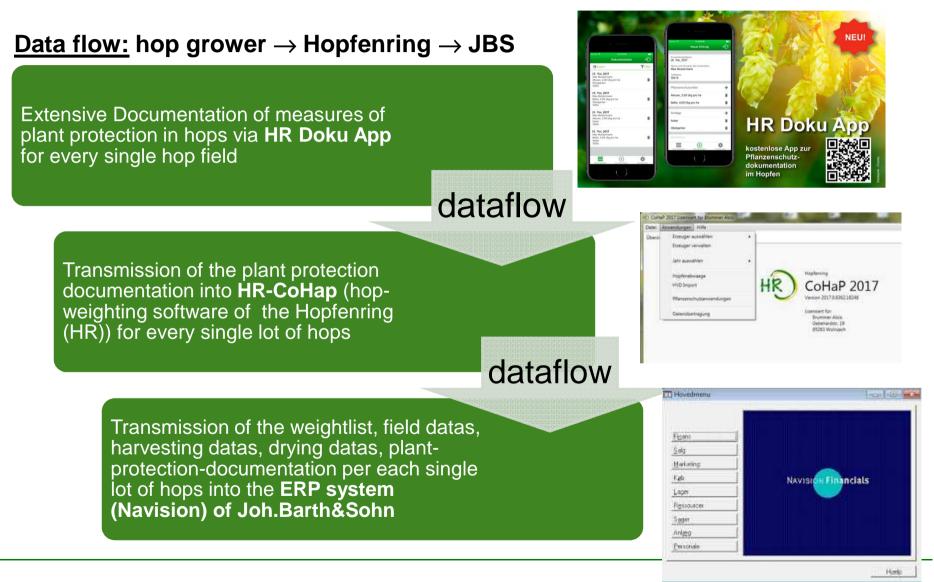
- →Water content of the Spindle: 15 %
- →Water content of the cone pedals: 7 %
- Inhomogenity during the drying process, because of indifferent cone sizes
- Conditioning Procedure = Distribution of different moisture contents
 - Flat storaging on a floor (hop floor)
 - Conditioning in a conditioning champer

• Scheme of conditioning of hops in conditioning cambers

Quelle: Münsterer Jakob, LfL IPZ 5a

A member of the BARTH-HAAS GROUP

Digitalisation in hop production – Ensuring Traceability & HAAS HOPS ACADEMY All there is to know about hops!


Computer documentation software

- Extensive documentation of measures of plant protection in hops
- Transmission of the plant protection documentation into CoHap

• HR-CoHaP: Hop-weight-software of the Hopfenring (HR)

Digitalisation in hop production – Ensuring Traceability & HAAS HOPS ACADEMY All there is to know about hops!

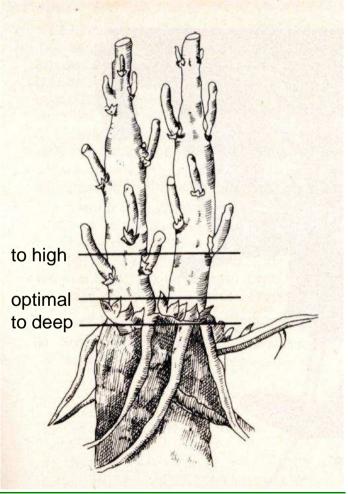
A member of the BARTH-HAAS GROUP

Sense and purpose of the cutting/puning of the hops:

- <u>Most important</u>: steering of the budding => steering of the growth => aim: end of vegetative growth (Stadium 39) should be between mid June and begin of July – start of blooming should be not before end of June!!! → very important to adjust foreign varieties to another growing region!!!
- control of pests and diseases: (high number of Peronospora spores in the top sprouts, which will be removed mechanically through the cutting!)
- rejuvenation of the plant (stimulation of the plant through the cutting, stimulation of regernation and growth)
- mechanical control of weeds (wintergreening/weeds on the hill row will be removed mechanically and tilled into the soil
- isolation of cuttings for baby plant production

Adjusting varieties to different growing regions/climates through cutting of the hops

Discussion of hight of cutting and time of cutting of the individual varieties:

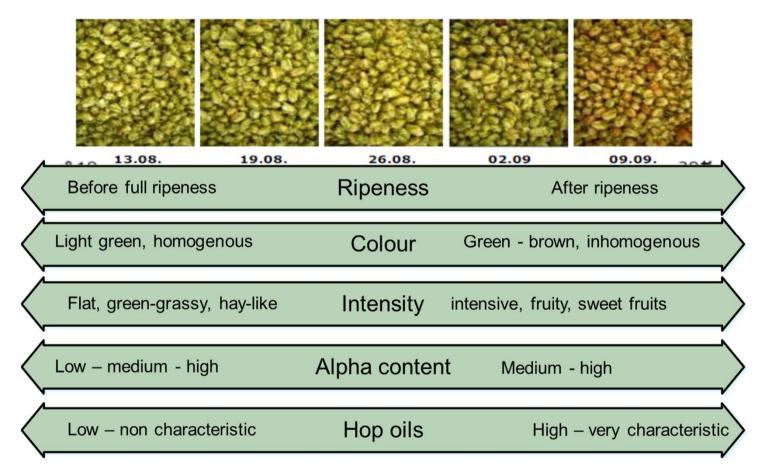

Important: The cutting surface should be smooth, sleek, even and plain to improve the wound closure!

Cutting to high:

- plant gradually gets over time upwards
- Vitality and yield decrease gradually time by time

Cutting to deep (cut into the heart/death cut):

- insufficient, poorly and uneven sprouting
- dereased growth
- reduced yield


Discussion of the timing of the cutting of the individual varieties:

cutting time					
til mid march	end of march	end of march til start of april	start of april til mid of april		
Hall. Tradition	Amarillo	Callista	Saazer		
Hall. Taurus	Ariana	Hallertau Blanc	Spalter		
Northern Brewer	Brewers Gold	Hallertauer Mfr.	Tettnanger		
Opal	Cascade	Nugget			
Perle	Hall. Magnum	Spalter Select			
Polaris	Herkules				
Saphir	Hersbrucker Spät				
	Huell Melon				
	Mandarina Bavaria				
	Smaragd				

- these above mentioned dates are true for the Hallertau climate
- cutting needs to be adjusted for different climates, eg.
 - North Italy: cutting delay of 10 14 days compared to the Hallertau cutting dates,
 - North Germany: cutting about 3 5 days earlier compared to the Hallertau

Factors influencing the hop quality severe

Example: Ripeness/Maturity – Time of harvest

The challange is to find the right date of harvest to ensure acceptable optical quality combined with highest yield and brewing value!!!

<u>PRO:</u>

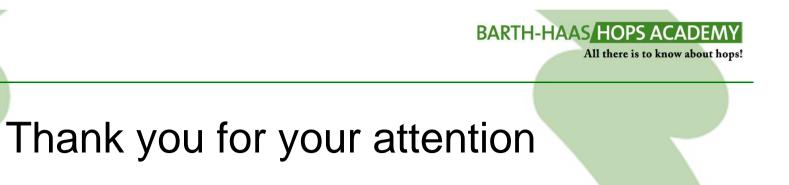
- Revenue potentially high yield & gain per acreage
- Regionality production of hops close by the brewery/consumers
- Jobs preservation of jobs in the region
- Diversification horizontal diversification of farms (increasing chances, decreasing the risks)

<u>CON:</u>

- **Risk** potentially high risks (market risk, quality risk, financial risk, ...)
- Know How only highest quality is accepted at the market
- Jobs high labour demand in hop production
- Investment extremely high investments (trellis, planting, special machinery like harvesting/picking/drying/conditioning/baling equipment ...) has to be done to
- Infrastructure infrastructure of hop production & hop processing is only available in the large hop growing regions
- Climate climatic risks
- Varieties several varieties are proprietary and protected not to grow them everywhere

Zur Person

Stefan Stanglmair


44 Jahre alt (Jahrgang: 1974)
verheiratet, 3 Kinder

<u>Ausbildung:</u>

- Fachoberschule Schönbrunn, Agrarwirtschaft 1991-93
- Univeristy of Applied Sciences Weihenstephan (FH Weihenstephan, Land- und Ernährungswirtschaft 1994-98, Dipl.-Ing. agr. (FH))
- Praktikum 5 Monate in Kent, GB, (Hayle Farm)

Laufbahn:

- aufgewachsen auf einem Hopfenbaubetrieb in der
- südlichen Hallertau
- (~20 ha Hopfen, ~14 ha Marktfrucht, ~15 ha Wald)
- seit 1998 bei Joh. Barth & Sohn
- (Hopfeneinkauf & Beratung,
- südliche Hallertau & Slowenien)
- Betreiber einer eigenen Hopfenproduktion im Süden der Hallertau auf 20 ha:
- (Sorten: Hallertau Mittelfrueh, Mandarina Bavaria, Hallertau Blanc, Huell Melon, Ariana, Polaris, Herkules)

www.HopsAcademy.com

www.BarthHaasGroup.com

A member of the BARTH-HAAS GROUP